返回
列表
上一篇
文章
下一篇
文章
四川数据标注可以解决的挑战
发布时间:2024.08.27 09:48:51
分享到:

数据标注是需要大量的训练数据来创建像人类一样行动的人工智能或机器学习模型。必须训练模型来理解特定信息以做出决策并采取行动。

数据标注是为人工智能应用程序对数据进行分类和标注的过程。必须针对特定用例对训练数据进行正确分类和标注。公司可以利用人类标注的高质量数据来构建和改进人工智能系统。

有监督的机器学习模型使用正确标注的数据进行训练和学习,以解决以下挑战:

分类是将测试数据分类为子类别的过程。分类问题包括但不限于确定患者是否存在疾病并将他们的健康记录放入适当的“疾病”或“无疾病”类别。

使用一种称为回归的统计方法,可以确定两个数据集之间是否存在联系。例如,回归问题可用于估计广告支出对产品销售的影响。

语音识别、产品建议、适当的搜索引擎结果、语音识别、计算机视觉、聊天机器人以及其他对消费者体验的改进是最终结果。文本、声音、静止图像和移动视觉效果是最常见的数据形式。

留言反馈
企业名称
所在区域
姓名
电子邮箱
联系电话
问题描述
上传图片